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1 Introduction

Supersymmetric Grand Unification still stands out as the most compelling paradigm for
beyond the Standard Model physics — it is elegant, explains the value of sin θW , and
can be naturally embedded in string theory [1].1 Several developments within string the-
ory, however, have motivated the exploration of an array of alternative possibilities. In
particular, the discoveries of D-branes [3], warped flux compactifications, and the string
landscape [4] have led to the recognition that supersymmetric GUTs form only a very small
subset among many conceivable string realizations of the Standard Model.

A common feature of all string (motivated) phenomenological scenarios is that 4-d ef-
fective field theory breaks down at some high energy scale, above which extra dimensional
or string physics takes over. Traditionally, the decompactification scale is taken to be close
to the GUT scale, but in many popular scenarios, it is assumed to be much lower. From the

1See [2] for a review of the current status.
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4-d vantage point, the decompactification transition manifests itself via a sudden escalation
in the number of field theoretic degrees of freedom. Any well thought out phenomenolog-
ical scenario based on extra dimensions must therefore supply a cogent description of the
dynamics among all these extra dimensional modes, and of their interactions with Stan-
dard Model particles. A convincing way of specifying these dynamical rules is by finding a
natural realization of the given extra dimensional scenario within string theory.

A popular class of low scale scenarios postulates that the Standard Model degrees of
freedom reside inside a 5-d warped geometry, either localized on branes or more smoothly
distributed along the extra dimension [5]. An attractive aspect of this type of models is that
the warped extra dimensional physics can be viewed through the prism of the AdS/CFT
correspondence [6–8], and reformulated in pure 4-d language in terms of the dual strongly
coupled large N gauge theory. The AdS/CFT dictionary comes with precise rules, which,
if followed correctly, supply a consistent string embedding of the given warped scenario.

Via the holographic perspective, the decompactification transition is recast as a sudden
expansion of the total effective rank N (or number of ‘colors’) of the 4-d gauge theory.
This precipitous increase in the number of colors may arise via symmetry restoration or
deconfinement of a large N gauge group. Models with large warped extra dimensions
are extreme representatives of a continuous family of beyond-the-Standard-Model physics
scenarios in which the total rank increases with energy scale.

A natural way for the number of colors to run with scale is via a duality cascade [9, 10].
In the context of renormalization group flows, a change in effective rank arises when an
asymptotically free gauge theory flows to strong coupling in the IR, where its low energy
physics allows a weakly coupled description in terms of a dual theory with fewer colors.
A duality cascade is the general phenomenon whereby a quiver gauge theory undergoes a
sequence of Seiberg dualities. Cascading RG flows are of particular interest because they
occur for many field theories with known supergravity duals [9, 11, 12]. The classic example
is the Klebanov-Strassler (KS) gauge theory, the holographic dual to the fluxed deformed
conifold [9].

The existence of a holographic dual is directly linked to the realization of the gauge
theory via open strings attached to a stack of D-branes. Starting with just a few D-
branes in the IR, near the bottom of the warped throat, the cascade will drive the effective
number of branes to increase towards the UV, until it is large enough to be captured by a
dual geometry.

As noted by several authors [13–15], the existence of duality cascades suggests an
interesting new avenue for model building. In the IR we observe the Standard Model,
which has a finite rank gauge group. In the UV, on the other hand, string theory motivates
the possibility that physics becomes higher dimensional and may admit, over some energy
range, a dual description in terms of a large N 4-d gauge theory. It is then natural to
consider the general class of scenarios in which the Standard Model in the IR and the large
N theory in the UV are smoothly connected. We will refer to this class of new physics
models as ‘N-ification scenarios’.

– 2 –
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N-ification: decompactification via a duality cascade. As indicated in figure 1,
N-ification scenarios in a sense interpolate between Grand Unified models, that assume a
relatively minimal field content below the GUT scale, and large/warped extra dimensional
scenarios [5, 16], that postulate the appearance of many new degrees of freedom at a
relatively low scale. In N-ification models, the the decompactification process starts at a
low scale, but takes place gradually.

There are many possible ways in which the MSSM may connect to a cascading gauge
theory in the UV. Starting in the IR, the first step upwards in the cascade introduces extra
gauge and matter degrees of freedom. These extra particles are invisible below some scale
Λc, at which they become confined or acquire a mass via symmetry breaking. For any
realistic scenario, the experimental limits on compositeness or existence of exotic matter
dictate a lower bound for the critical scale Λc in the multi-TeV range.

Given the first step upwards in the cascade, and assuming that no other new gauge
groups appear at some higher scale, the UV physics in principle follows from integrating
the RG flow upwards. Whenever one of the gauge groups reaches strong coupling, one
can use Seiberg duality to switch to a weakly coupled electric formulation. Without extra
guidance from string theory or some other UV-motivated principle, however, the bottom-
up perspective typically leads to irregular duality sequences, that involve rapidly growing
ranks and numbers of generations. A more attractive class of models are the periodic
scenarios, in which the structure of the quiver diagram and the number of generations
remain constant throughout the cascade, and only the ranks of the gauge groups change.
Besides being more appealing as field theories, such regularly cascading theories are also
more likely to allow a realization as the world-volume theory of D-branes at some suitable
geometric singularity.

In the KS gauge theory, the duality sequence unfolds evenly and the number of colors
grows logarithmically with RG scale. In general, however, and in particular for all known
cascade extensions on the MSSM, the duality steps tend to accumulate in shorter and
shorter intervals, and the gauge group ranks grow at an increasingly rapid pace, as the
systems flows towards the UV. Eventually the theory gets trapped inside a strong coupling
regime and hits a so-called duality wall, located at some finite UV scale [11, 13, 15, 17, 18].
At the wall, the rank and ’t Hooft coupling of the gauge theory diverge and the gauge theory
description breaks down. Cascading RG flows, even without duality walls, are inherently
strongly coupled. As a result, their field theory analysis is subtle and one should be cautious
about its interpretation. The most rigorous support for the field theory conclusions comes
from supergravity duals (for those theories that have them). This is precisely the case
for the model we consider in this paper. As we will show, a duality wall arises from the
logarithmic running of the total gauge coupling (which is computed from the dilaton profile
in supergravity) by dimensional transmutation. In a complete framework, the physics near
the duality wall is assumed to be regulated via the decompactification transition from the
4-d gauge theory to a full-fledged higher dimensional string compactification.

Igniting the cascade: deconstructed decompactification. It can be shown under
quite general assumptions that the embedding of the MSSM inside a cascading gauge
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Figure 1. The number of degrees of freedom as a function of energy scale for three scenarios. In
Grand Unified models, the MSSM fields (possibly with some messengers) capture all visible matter
up to the GUT scale. In low scale extra dimension scenarios, the degrees of freedom proliferate at
a decompactification scale Λc � MGUT. In N-ification, extra degrees of freedom appear gradually
via a duality cascade, that starts at Λc and accelerates towards the UV.

theory requires the introduction of one or more extra gauge groups. The decoupling tran-
sition, at the scale Λc, of this extra sector from the MSSM can take place via three basic
mechanisms [15]:

Confinement. The extra gauge group factor G has fewer flavors than colors, and becomes
strongly coupled at some energy scale Λc. Matter particles charged under G confine
and pair up into mesons, which manifest themselves as MSSM matter in the IR.

Higgsing. Bifundamental matter connecting two quiver nodes develops an expectation
value at some scale Λc, breaking a product gauge group to its diagonal. The unbroken
gauge symmetry is part of the MSSM-gauge group.

Decoupling. Bifundamental matter connecting two quiver nodes has a mass equal to Λc.
Below the scale Λc, the extra gauge sector is completely decoupled from the MSSM.

A general N-ification scenario may involve a combination of these three mechanism.
Moreover, extra matter could in principle continue to show up at higher energy scales
beyond Λc. To keep things minimal, however, we will imagine that, once the RG cascade
has been initiated, no other new gauge groups will appear. The UV physics then in principle
follows from integrating the RG flow upwards, and by using the rules of Seiberg duality
whenever one of the gauge group factors reaches strong coupling.

We would like to think of the appearance of the extra matter at Λc as are the first
indication of extra dimensional physics. From this perspective, an attractive realization of
a gauge theory one step up in the duality cascade is shown in figure 2. It depicts a minimal
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Figure 2. The quiver diagram above the last step of the duality cascade. The gauge group G has
Nf ≤ Nc and confines at a scale Λc. The associated mesons acquire a vev that breaks the product
of two Standard Model gauge groups to the diagonal.

realization of the MSSM extended by a deconstructed small extra dimension [19]. The
extra gauge group G is connected via vector pairs of bifundamental matter to two copies of
the Standard Model. We assume that the number of bifundamentals is less than the rank
of G, so that the gauge group G has Nf ≤ Nc and confines at some scale Λc. The extra
charged matter pairs up to form mesons. The strong gauge dynamics generates an ADS
superpotential, or a quantum modified moduli space in the case that Nf = Nc. As a result,
some mesons get non-zero vacuum expectation values, that, in a proper set-up, break the
product of two Standard Model gauge groups to the diagonal. Most of the mesons acquire
a mass of order Λc and decouple; some may remain light and produce part the MSSM
spectrum.

This particular realization of the first cascade step thus involves a combination of the
confinement and Higgsing scenario. It reveals the basic characteristics of a decompactifi-
cation transition of a small extra dimension [19]: above the symmetry breaking mass scale
set by the meson vevs, the theory exhibits a KK doubling of the MSSM degrees of freedom.
Below Λc only the constant modes survives, leaving only the MSSM in the infrared.

Deconstruction produces only a rudimentary version of extra dimensional physics. In
particular, it does not include 5-d gravity. However, once the deconstructed dimension
has been created, the N-ification scenario assumes that the rest of the extra dimensional
dynamics emerges via the RG cascade and the holographic correspondence. Above the
deconfinement transition of G, the new bifundamental matter accelerates the RG running
of the two MSSM factors. Integrating upwards, the MSSM gauge groups hit strong coupling
at an intermediate scale, considerably above Λc but much below MPl. This is where the
next Seiberg duality takes place. This process continues until at some high energy scale all
gauge groups have large rank and large ’t Hooft coupling, and the holographic AdS/CFT
correspondence becomes applicable. The transition at Λc can thus be thought of as the
first stage of a gradual decompactification process.

The energy scale above which the closed string description becomes accurate depends
on detailed parameters, such as the rank of the gauge group G at the bottom of the
cascade. A priori, we may choose G to have a large rank. This gives rise to a low scale
extra dimensional scenario. In the following, however, we will mostly consider the case in
which G has relatively small rank, and the large N regime appears farther towards the UV
— with the wall ideally close to or somewhat below the Planck scale.
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Hierarchy of scales. Experience shows that cascading UV extensions of the MSSM typ-
ically display an accelerated sequence of cascade steps that eventually hit a duality wall
at some high scale. We imagine that upon embedding inside a complete string compact-
ification, the duality wall is regulated via the transition towards the full 10-dimensional
theory. Each specific N-ification scenario thus comes with a rather precise prediction for
the hierarchy between the low scale Λc, where the new physics first shows up, and the high
scale where the theory fully decompactifies. This hierarchy depends on various discrete
parameters, such as the number of families and the rank of the extra gauge group G.

Computing the hierarchy in general would seem involved or even impossibly hard, since
the cascading quiver theory typically contains one or more strongly coupled gauge sectors,
so that anomalous dimensions are not small. As we will show in the following, however, one
can gain some partial control over the calculation by considering the total beta function,
that describes the running of sum of the (inverse gauge couplings)2

xtot =
∑
i

xi , xi =
8π2

g2
i

. (1.1)

This total gauge coupling is relatively insensitive to the duality transitions, and behaves
smoothly until it hits a strong coupling singularity xtot = 0 at the location of the duality
wall. We will find that, once the theory reaches a regime where the supergravity dual
description becomes applicable, the scale dependence of xtot becomes identified with the
profile of the dilaton along the holographic radial direction. By matching this dilaton
profile with the behavior of xtot in the gauge theory regime, one can make a reasonably
accurate estimate of the hierarchy of scales between the scale Λc and the scale where the
duality wall sets in.

Figure 3 gives a schematic depiction of a typical profile of xtot. Below the scale Λc, it
follows the total coupling of the MSSM. Just above Λc, the gauge theory cascade sets in.
Initially, in regime I, the ranks of the gauge groups are not yet large enough to admit an
controlled string dual description. At the intermediate range II, all the gauge group ranks
are large enough so that the dual supergravity description becomes valid. Finally, near
regime III, the duality wall appears and the transition to the full 10-dimensional string
theory takes place.

An explicit example. The N-ification program can in principle be formulated and de-
veloped from a purely field theoretic perspective. Indeed, one may view it as an approach
to string phenomenology that, rather than looking for ways to derive particle physics from
string theory, looks to develop scenarios for which the UV string theory can be derived
from the field theory. To find geometrically attractive realizations, however, it is natural
to look for guidance from string theory. So we adopt the hypothesis that the Standard
Model, and its UV extension in the form of a cascading gauge theory, both arise as the low
energy effective field theory of open strings attached to a configuration of D-branes, placed
within some suitable geometry.

As in [9], we are interested in finding periodic examples, for which the quiver diagram
returns to itself after a few Seiberg duality steps, but with a new assignment of gauge
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6.2 The most general configuration

Here we repeat the analysis for the most general configuration, which includes D7-

branes that descend to class (b) branes of Figure 11 C3/ZZ3.

zzz ... we don’t have to type again all the equations. The analysis extends with

few changes to this more general configuration... zzz

7. Large ’t Hooft coupling regime: a gravity dual

As the cascade moves to high energies, the gauge couplings and ranks become large.
The gauge theory rapidly reaches a regime that can be described in terms of a dual
gravity background.13

7.1 UV regimes

Figure 10 shows again the running of xtot as a function of scale. Λc is the cross-over

scale between the IR MSSM perturbative running and the UV cascade.

PSfrag replacements I II III

Λc MP l

xtot

log µ

Figure 10: Three UV regimes. I) The theory admits a gravity dual along the lines of KS. II)

The gravity dual is the analogue of KT. III) Close to the duality wall, both the supergravity

approximation and the field theory analysis in terms of a duality cascade break down.

It is useful to distinguish three energy regimes above in the UV:

• Regime I: above Λc, the RG flow takes the form of a duality cascade. The
distance between Λc and the first dualization is inversely proportional to M I ,
which also control how fast the ranks grow. For large M I , a large N (also large ’t

Hooft coupling) regime suitable for a gravity dual description is reached shortly

13Morally. this is true even for general field theories with a similar behavior but without an obvious
engineering in terms of D-branes at a singularity.

23

Figure 3. The typical behavior of the total inverse gauge coupling xtot as a function of scale. The
three regimes indicated are: (I) the onset of the RG cascade in the IR, (II) the large N regime in
which the dual supergravity description is valid, (III) the duality wall where the transition to the
full 10-d string theory takes place.

groups ranks. For such periodic cascades, the 4-d quiver gauge theory reaches a smooth
large N limit, for which it may be easier to identify a dual string description.

An interesting cascading extension of an MSSM-like theory was introduced and studied
in [14]. The quiver theory has the structure shown in figure 2, where upon evolving the
cascade towards the UV, the two light-blue nodes turn into large N versions of the Standard
Model gauge group U(N + 3)×U(N + 2)×U(N + 1) . The model was shown to admit an
explicit string theory realization in terms of D3 and D7-branes, placed on a Z3 orbifold
of a particular Calabi-Yau singularity, known as the cone over the suspended pinch point.
The theory has the hierarchical structure shown in figure 3. In the large N region II, it
has a known supergravity dual that develops a duality wall near the Planck scale.2 In the
infrared, it reduces to a semi-realistic field theory, that shares most essential features (gauge
group, chiral matter content, and couplings) of the MSSM. We will center our presentation
on this particular example, as it provides a useful and attractive illustration of our general
ideas.3 We would like to reiterate, however, that our general perspective can also be
applied to pure field theoretic models, that may reproduce low energy phenomenology in
greater detail.

Outline of the paper. This paper is organized as follows. In sections 3 to 4, we review
the particular embedding of the MSSM quiver theory inside of duality cascade introduced
in [14]. Our exposition is somewhat schematic, since most technical aspects of the model are
carefully worked out and explained in the original paper [14]. We will attempt to motivate

2Near the IR end of region II, energies are comparable to Λc. Because of this, the effect of the complex

deformation dual to the strong dynamics of G is important. Despite being conceptually equivalent to KS,

finding an explicit gravity dual for this region (based on the deformed cone) is formidable task due to the

small isometry group. In section 6, we present the gravity dual based on the singular cone, which is valid

at energies well above Λc. This solution is analogous to the Klebanov-Tseytlin one for the conifold [21].
3Our choice of flavor D7-branes differs slightly from the one in [14], but their analysis applies with trivial

modifications.
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the construction and highlight various physical aspects. The quiver theory associated with
an SPP singularity is introduced in section 2, as an example of a deconstructed small
extra dimension. The MSSM-like quiver theory an its D-brane realization is summarized
in section 3; some more detailed discussions are referred to appendix A. Sections 4 and
5 study the RG cascade. We discuss the calculation of the running of gauge couplings in
strongly coupled cascading theories and present the computation of the hierarchy of scales
between the onset of the cascade and the location of the duality wall. We will find that
the UV scale is roughly 12 orders of magnitude above Λc.

In section 6 we explain some general properties of supergravity duals of D-brane gauge
theories with flavor D7-branes. In particular, we explain how the presence of the D7-
branes naturally leads to an accelerated RG cascade, with a non-trivial dilaton profile and
a duality wall. We compute the total beta-function, that governs the radial dependence of
the dilaton, and show that it is proportional to the number of flavor branes. The precise
relation naturally follows from the fact that the dilaton is paired with the axion, which in
turn is sourced by the D7-branes. We show that the supergravity result agrees with the
gauge theory calculation.

2 A deconstructed small extra dimension

In this section, we present the geometric realization of a three node quiver, that takes the
form of a deconstructed extra dimension of the type shown in figure 2. As a warm-up, we
first consider the toy example in which the Standard Model node is replaced by a simple
U(N) gauge factor. The set up then involves N D-branes placed at a simple Calabi-Yau
singularity known as the suspended pinch point (SPP) singularity.

2.1 D-branes at the suspended pinch point

When placed in the proximity of a Calabi-Yau singularity, D-branes typically rearrange
themselves into so-called fractional branes, D-brane bound states wrapped around small
compact cycles supported within the singularity. The gauge theory on a collection of such
branes takes the form of a quiver gauge theory, where each stack of N fractional branes
represents a separate U(N) quiver node. The open strings at the intersections between the
branes give rise to massless bifundamental matter, represented by the oriented lines that
connect the quiver nodes.

The suspended pinch point (SPP) singularity may be obtained via a partial resolution
of a Z2 ×Z2 singularity [20]. It is described by the following equation in C4

cd = a2b, (a, b, c, d) ∈ C4 . (2.1)

Geometrically, the singularity looks like a complex cone over a 4-d base manifold Σ4. For
our present purpose, it is sufficient to know that the singularity supports three types of
fractional branes, and thus gives rise to a quiver theory with three nodes. The quiver for
a specific collection of fractional branes on the SPP singularity is shown in figure 4. The
two light-blue nodes indicate U(N) gauge factors. The superpotential of this SPP quiver
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Figure 4. The three node quiver of N D3-branes and M fractional branes on an SPP singularity.
The extra node with gauge group G = U(N+M) with M >N confines in the IR.

gauge theory takes the form

W = Tr
(
Φ(XX̃ − Ỹ Y )− ZZ̃ X̃X + Z̃ZY Ỹ

)
(2.2)

The two nodes without adjoints are fractional branes that wrap rigid cycles; the node with
the adjoint corresponds to a brane that is free to move in one direction. The rank of a quiver
node can be adjusted by changing the multiplicity of the corresponding fractional brane.

To realize the deconstructed extra dimension of the type shown in figure 4, we choose
the multiplicity M of the third fractional brane such that the third node G has rank
N + M > 2N . In this case, it will flow to strong coupling towards the IR and confine at
some scale Λc. The chiral matter fields charged under G combine into mesons Myy = Ỹ Y ,
Myz = Ỹ Z̃, etc. The strong coupling dynamics gives rise to an ADS contribution to the
superpotential. The superpotential then takes the form

W = Φ(XX̃ −Myy)−MzzX̃X +MyzMzy + (M −N)
(

Λ3M+N

detM

) 1
M−N

(2.3)

M =

[
Myz Myy

Mzz Mzy

]
=

[
Ỹ Z̃ Ỹ Y

ZZ̃ ZY

]
. (2.4)

The analysis simplifies slightly for the case N = 1. The equation of motion of Mzy sets
detM = Λ

3M+1
M . The mesons Myy, Myz, Mzy, and the linear combination Φ−Mzz acquire a

mass. On the branch where only Myz and Mzy have non-zero vevs, the two light-blue nodes
collapse to the diagonal U(N) gauge theory, with three remaining light adjoint matter fields
X, X̃ and Φ+Mzz.4 By interpreting the two U(N)-nodes as two points inside a small decon-
structed extra dimension, the confinement transition may be viewed as the KK-reduction
to the 4-d theory. The quiver with G = U(N + M) describes the world-volume theory of
N D3 branes and M fractional branes, given by D5-branes that wrap a compact 2-cycle

4We are being a bit schematic in order to simplify the discussion. Φ and Mzz have mass dimensions 1

and 2, respectively. Whenever we consider linear combinations of them, Mzz is multiplied by an implicit

Λ−1 factor.
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within the base of the SPP singularity. This set-up is analogous to the Klebanov-Strassler
system, and similarly leads to a cascading gauge theory with holographic dual given by a
deformation of the orginal SPP singularity supported by fluxes [22]. The passage from the
D-brane theory to the smooth supergravity dual is a brane/flux geometric transition, that
replaces the M fractional branes by M units of RR 3-form flux over finite size 3-cycles.
The deformed geometry is described by the equation

cd− a2b = εa. (2.5)

where ε is the deformation parameter. This geometry can be recovered by studying the
mesonic moduli space after the confinement transition at Λc. The mesons represent the
location of the remaining N D3-branes, moving inside the deformed SPP. The supergravity
description of the deformed geometry, however, becomes accurate only if the rank of the
confining node G is sufficiently large. The correspondence between gauge theory dynamics
and geometry was investigated in detail in [22] and, in a context closer to this paper, in [14].
Many examples, including our main case of study, were presented in these references and
we refer the reader to them for details.

In the above toy example, the deformed geometry is smooth. If the geometry after the
deformation remains singular, a chiral gauge theory such as the MSSM can arise on the
worldvolume of the D3-branes. In the next two sections, following [14], we will review how
this toy example can be generalized into a semi-realistic UV extension of the MSSM. In
this generalization, the two light-blue nodes each host one copy of the MSSM gauge group.
Moreover, we will see that the three remaining light fields X, X̃ and Φ +Mzz will carry the
correct quantum numbers to be identified with three MSSM matter generations in the IR.

3 An MSSM-like quiver

Because the MSSM takes active part in the duality cascade, we need to embed it inside
a quiver theory with somewhat special characteristics that allow the gauge group ranks
to increase with every cascade step, without changing the quiver data. These special
properties are naturally implied from the geometric rules of D-brane engineering.

The specific MSSM-like quiver theory that we will use in our main example is depicted
in figure 5. The three light-blue colored nodes represent the three Standard Model gauge
groups, extended to

U(3)×U(2)×U(1). (3.1)

The model has the same chiral matter content, indicated by the oriented lines, as the
MSSM, three generations of quarks and leptons (each generation has its own color), except
that it has a non-minimal Higgs sector, one pair of Higgs doublets per generation. The
right-handed neutrinos are also missing. The theory is free of non-abelian anomalies but
has mixed U(1)/non-abelian anomalies. Only the hypercharge combination

Y = −Q1 −
Q2

2
− Q3

3
(3.2)
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Figure 5. The MSSM quiver theory obtained from C3/Z3 with six fractional D-branes (light-blue
nodes) and six flavor D7-branes. It describes an anomaly free gauge theory, with the matter content
of the MSSM plus two extra pairs of Higgs doublets.

of abelian gauge symmetries is anomaly free and remains light. The remaining two anoma-
lous U(1) gauge bosons are assumed to acquire a large mass, of order the string scale, via
the familiar Green-Schwarz anomaly cancellation mechanism [23].

The small colored vertices on the upper left and right corner represent flavor nodes.
They do not support a local gauge symmetry group. We can distinguish two different
types. The three nodes on the left support chiral matter charged under U(3) × U(2);
the corresponding lines are oriented such that the superpotential contains cubic Yukawa
couplings Tr(d̃ HdQ) of the down-type quarks. The lines connected to the three flavor nodes
on the right, on other other hand, are oriented in the opposite direction, forbidding the
presence of cubic terms in the superpotential. Rather than with cubic Yukawa couplings,
the superpotential starts out with quartic terms of the form Tr(ẽ LQ ũ).

The quiver theory of figure 5 can be engineered by placing D-branes on a C3/Z3 singu-
larity [25]. The brane configuration involves 6 fractional branes, that wrap small compact
cycles within the orbifold geometry, and give rise to the local gauge symmetry (3.1). The
flavor nodes arise from D7-branes that wrap non-compact cycles. The main elements of
the construction are summarized in appendix A; a more detailed exposition is found in the
original literature [25].5

The low energy phenomenology of the MSMM-quiver model depends on the precise
values of the various couplings, on the mediation mechanism for supersymmetry breaking,
etc. We will not concern ourselves with these questions here, except to note that, as a
world-volume theory of a local brane construction, all gauge invariant couplings (gauge
and Yukawa couplings, soft parameters, etc) can in principle be freely adjusted by tuning
local geometric data. Variations of the superpotential correspond to complex structure
deformations of the C3/Z3 geometry, gauge couplings can be modified by turning on 2-form
fields, and soft parameters arise by turning on F-term components of closed string fields.

5See also [26–28] for other realizations of MSSM-like theories with D-branes on singularities.
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4 The duality cascade

Still following [14], we now put the various ingredients together to obtain a geometric
realization of a cascading extension of the MSSM-like gauge theory.

At the field theory level, the plan is to construct a gauge theory with the schematic
quiver structure depicted below in figure 6. It shows the SPP quiver gauge theory, with the
extra flavor nodes added ‘by hand’. The two light-blue nodes represent two gauge groups
that, at the bottom of the cascade, reduce to two copies of the Standard Model gauge
group. The small colored nodes are the flavor nodes and the colored lines are chiral fields
with the quantum numbers of the 3 generations of quarks and leptons relative to the left
SM node, except that the two generations of (up)quarks are in bifundamental of the left
and right SM node. In approaching the IR, the node G has Nf < Nc and confines at the
scale Λc. The corresponding mesons acquire vevs, similar as discussed for the toy model
in section 2. The challenge is to find the correct structure for the gauge group G and
bifundamental matter such that below the confinement transition, the effective field theory
that remains in the infrared has the gauge symmetry and field content of the MSSM.

This field theoretic puzzle has a beautiful geometric solution, obtained by combining
the lessons of the two previous sections [14]. The deformed SPP geometry, as specified by
eq. (2.5), is invariant under the Z3 action

a→ ω2a, b→ ωb, c→ ωc, d→ ωd (4.1)

with ω3 = 1. It is therefore possible to define the Z3-orbifold of the deformed SPP sin-
gularity. Thanks to the deformation, the local region near the fixed point locus of the Z3

action looks like the local region near the fixed point of the flat orbifold C3/Z3. We can
thus place the same combination of fractional branes and D7-flavor branes on the deformed
SPP orbifold, that produces the MSSM quiver of figure 5 when placed on the flat orbifold.
The holographic correspondence then virtually guarantees that the resulting gauge theory
will have the quiver structure as indicated in figure 6, and will exhibit an RG cascade that
flows to the MSSM-quiver theory in the infrared.

4.1 Bottom of the cascade

The SPP/Z3 geometry is attractive, because the corresponding gauge theory can be eas-
ily derived by orbifolding that for the SPP. By now it is known how to derive the field
theory on D-branes on arbitrary toric singularities using dimer model techniques [29]–[34].
Schematically, we know that the orbifold projection will split each of the three nodes of
the SPP gauge theory into a product of three gauge groups, corresponding to the three
irreducible representations of Z3. In [14], the Chan-Paton factors are chosen as follows

γSM1 = diag (11 , ω12 , ω
213 )

γSM2 = diag (12 , ω13 , ω
211 ) (4.2)

γG = diag(1M+3, ω1M+1, ω
21M+2),

– 12 –



J
H
E
P
0
6
(
2
0
0
9
)
0
3
0

SM

G

 

 

 

1
SM

2

Figure 6. Schematic quiver of the cascading field theory. The light-blue nodes represent two copies
of the Standard Model gauge group. The third node G confines in the IR, leading to vevs for the
mesons that break the gauge symmetry to that of the Standard Model. The colored lines are chiral
fields that in the IR reduce to 3 generations of quarks and leptons.

which, as promised, breaks the gauge symmetry to two copies of the Standard Model gauge
group, times the extra gauge factor

G = U(M + 1)×U(M + 2)×U(M + 3). (4.3)

The Z3 transformation rule of the chiral matter fields follows from (4.1) and the identifi-
cations given in the second footnote in section 2. Using the notation as in figure 4

X → ω2X ; X̃ → X̃ ; Y → ω2Y ; Ỹ → Ỹ ;

Z → Z ; Z̃ → ωZ̃; Φ→ ωΦ

Together with the chosen assignment of Chan-Paton factors (4.2), these transformation
rules dictate how the chiral matter lines connect between the quiver nodes: a field connects
only those pairs of nodes for which the relative Chan-Paton phase cancels its Z3 charge.
In a similar way, one may assign the proper Chan-Paton phases to the D7-branes, so that
the corresponding flavored chiral matter fields connect to the Standard Model nodes in
accordance with the MSSM-quiver of figure 5.

The resulting quiver diagram is shown in figure 7 (periodic identification of the hori-
zontal and vertical directions is understood). Note that all nodes have an equal number of
incoming and outgoing lines, ensuring that all non-abelian anomalies cancel. We have also
indicated, with light dashed magenta lines, the mesons that will acquire an expectation
value after confinement of the three G nodes in the middle column.

The spectrum of light particles and the symmetry breaking pattern after the con-
finement transition is found by following the same steps as outlined for the toy model in
section 2. The superpotential of the orbifold gauge theory is inherited from the cover the-
ory, and thus looks identical to eq. (2.2), except that all chiral fields must be generalized
to carry two indices that label the two nodes that they connect to. The analysis of the
orbifold spectrum is described in detail in [14], and we will not repeat it here.
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Figure 7. The quiver diagram of the SPP/Z3 orbifold gauge theory with flavor nodes. The mesons
that acquire a non-zero vevs upon confinement of G are lightly indicated in magenta.

The result one finds is that, among the mesons formed out of the chiral matter charged
under G (the black arrows in figure 7) only the mesons M ii

yz and M ii
zy that connect left and

right SM nodes with the same rank acquire a vev. This leaves the diagonal SM gauge
group unbroken. As in section 2 (and using the same notation) one finds that the mesons
M ij

yy, M ij
yz, M

ij
zy, and the linear combination Φij −M ij

zz acquire a mass. The matter fields
that remain light are Xij , X̃ij and Φij +M ij

zz , and all the flavored matter connected to the
flavor nodes.

In other words, all colored lines in figure 7 directly reduce to light particles, except
that the solid red arrows (the Φ fields) mix with the meson fields M ij

zz , that are charged
under the right copy of the SM gauge group. Physically, this means that all SM particles
in this model are elementary (at least relative to this last confinement transition at the
bottom of the RG cascade) except that one generation of the left-handed quark doublet
and right-handed up quark is partially composite. From a phenomenological perspective,
it is natural to identify the two elementary quark families with the first two generations,
and the partially composite quarks with the third generation.6

4.2 The SPP/Z3 cascade

The duality cascade for SPP/Z3 was analyzed in detail in [14]. Starting from figure 5 at
some UV point, it terminates in figure 6 as N is gradually reduced to zero. Similarly,
M also decreases towards the IR. The cascade follows directly from the one in the parent
SPP theory, which at each step dualizes the highest rank node out of the two without
an adjoint [22]. After each dualization, the quiver becomes again the SPP one, with the
adjoint field shifted to another node. Seiberg duality on a single SPP node translates to
a dualization of all three nodes in a column of the SPP/Z3 quiver. The cascade then
corresponds to sequentially dualizing the three columns.

6 Experimental bounds, from tests of Z → bb̄, only allow for a small amount of TeV-scale compositeness

of bL. As we will discuss later, we have other reasons to assume that the confinement scale Λc will be in

the multi-TeV range.
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Figure 8. The quiver diagram of the SPP/Z3 orbifold gauge theory with flavor nodes, at some
arbitrary point in the cascade.

After each dualization, the D7-branes ‘move’ over the quiver, i.e (anti)fundamental
fields connect to new nodes [14]. When a node that contains (anti)fundamental fields is
dualized, some of the resulting Seiberg mesons are singlets under all the gauge groups.
These fields transform in bifundamental representations of the global symmetry nodes in
the extended quiver and can be represented by arrows connecting them. These mesons,
together with their evolution with scale, holographically encode degrees of freedom in D7-
D7’ sectors. They are generically necessary in flavored cascades in order to match anomalies
in global symmetries. In this particular example, they become massive after a few steps
and can be integrated out. In other cases, such as in the model studied in [47], their number
can build up towards the UV.

5 RG running

Let us review the basic ideas necessary for computing duality cascades from a field theory
perspective. Cascading theories are generically at strong coupling, with fields having O(1)
anomalous dimensions. It is crucial to take into account these large anomalous dimensions
(equivalently superconformal R-charges) to appropriately determine the running of cou-
plings. The starting point is a superconformal quiver gauge theory with

∏k
i=1 SU(ni), with

ni = riN .7 To compute the anomalous dimensions in the superconformal theory, we first
require the vanishing of the beta functions for gauge couplings

βi =
dxi
d lnµ

= 3ni +
1
2

k∑
j=1

(fij(γij − 1) + fji(γji − 1))nj (5.1)

with xi given in (1.1). We present equations in a form that is most suitable for its appli-
cation to quiver gauge theories. fij is the symmetric adjacency matrix of the quiver and
gives the number of bifundamental multiplets between nodes i and j. The superpotential

7Most of the examples considered in the literature correspond to ri = 1 for all i.
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is of the form W =
∑

µ hµWµ, with Wµ gauge invariant monomials. The couplings hµ have
scaling dimension

β(hµ) = −d(hµ) +
1
2

∑
Xij∈Wµ

γij (5.2)

where d(hµ) = 3− deg(Wµ) is the naive mass dimension of hµ.
The discussion can equivalently be casted in terms of superconformal R-charges, which

can be traded by anomalous dimensions by means of the usual relation Rij = 2/3 + γij/3.
Typically, the equations above do not fully determine the anomalous dimensions. This
is a manifestation of the fact that conformal invariance is not sufficient to rule out the
possible mixing of the superconformal R-charge with additional U(1) global symmetries.
The remaining freedom is fixed by a-maximization [35]. Within the space of solutions to
(5.1) and (5.2), the R-charges must maximize the trial central charge

a =
3
32

[
2
∑
i

n2
i +

∑
i<j

fijninj [3(Rij − 1)3 − (Rij − 1)]
]
. (5.3)

Conformal invariance is then broken by introducing small numbers (compared to N)
M and K of D5 and D7-branes.8 From a field theory perspective, this corresponds to small
modifications of the gauge group ranks and a small number of (anti)fundamental fields. In
the presence of D5 and D7-branes, anomalous dimensions have an expansion

γ =
∞∑

m,n=0

γ(m,n)(M/N)m(K/N)n . (5.4)

We will be later interested in computing the beta fuction of the total coupling (1.1),
which we denote βtot. In order to determine it to leading order, it is sufficient to con-
sider the conformal values γ(0,0)

i,j (equivalently the associated R-charges). We justify this
statement below.

When computing the beta functions for individual gauge couplings, we must add to
(5.1) the contributions of the additional fundamental flavors. Combining all the beta
functions, we obtain

βtot = β0
tot +

3
2

∑
D7i

(Rqi +Rq̃i − 2)

= β0
tot −

3
2

∑
D7i

RXi (5.5)

β0
tot corresponds to the sum of contributions (5.1) for the original quiver, without extending

it by global nodes. Notice that the ranks that enter in β0
tot are not only the result of the

regular D3 and wrapped D5-branes but are also modified if flavor D7-branes are included.
In the second line, Xi is a “mesonic” chiral operator (i.e. a product of chiral fields, corre-
sponding to a path in the quiver, with internal color indices contracted) that transforms

8Our discussion generalizes without changes to cases with more than one type of D5 and D7-branes.
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in the conjugate representations of qi and q̃i which has a superpotential coupling to flavors
of the form

W ⊃ q̃iXiqi . (5.6)

In fact, every holomorphic D7-brane embedding is in one to one correspondence with a
superpotential coupling of this type. In appendix A, we discuss this correspondence in
more detail, with explicit examples for the case of C3/Z3. In (5.5), we have used that (5.6)
has R-charge equal to 2.9

So far, the only thing we know is that βtot is zero in the absence of flavor D7-branes,
with the first non-trivial contribution potentially appearing at O(K). Both terms in (5.5)
can a priori contribute. Since, as we have already mentioned, the ranks of gauge groups are
modified in the presence of flavor D7-branes (in addition, this also changes the number of
flavors each gauge group sees coming from bifundamentals connecting to other nodes) it is
a in principle possible that β0

tot provides a non-vanishing contribution to the beta function.
Let us compute the linear O(K) term in βtot. To calculate the contribution of β0

tot to
this linear term, we can find the beta function for each gauge node and add them up.10

We now introduce the additional input that the gauge theory we are considering is not
an arbitrary quiver, but it is engineered with D-branes on a singularity. As explained,
each node in the quiver corresponds to a bound state of D3, D5 and D7-branes (with the
latter wrapped over compact 2 and 4-cycles, respectively). Since the D7-brane components
do not extend radially, they do not contribute to a radial dependence of the dilaton. We
conclude that β0

tot = 0. We are left with the simple expression

βtot = −3
2

∑
D7i

RXi . (5.7)

An interesting consequence of this result is that, even in the case γ(1,0) and/or γ(0,1) do not
vanish, they do not contribute to βtot to linear order. In section 6 we rederive this result
from gravity.

5.1 Ignition scale

We now have all the tools necessary for estimating the decoupling scale Λc. As discussed
in section 1, it is sufficient to follow xtot, avoiding the intricate evolution of independent
gauge couplings along the cascade.11

9Once conformal invariance is broken, there is no longer a map between dimensions and R-charges of

operators. To keep expressions short, we have chosen to express (5.5) in terms of R-charges rather than

anomalous dimensions. The reader should be cautious and keep in mind that what we really mean is that

we should write (5.5) in terms of anomalous dimensions, derive the result (5.7) concluding that corrections

to anomalous dimensions do not enter βtot to leading order and then switch to the more compact notation

in terms of R.
10Notice that while we focus on the linear term of the beta function, we are not assuming that either

γ(1,0) or γ(0,1) vanish.
11xtot only involves the non-abelian part of the gauge group. It is possible to trace U(1) couplings along

the entire RG-flow, but we do not consider them in our discussion.
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Let us denote IR and UV the energy regimes below and above Λc, respectively. In the
IR, the theory is weakly coupled so it is sufficient to compute βIR

tot at 1-loop. On the other
hand, the theory is strongly coupled above Λc and βUV

tot is given by (5.7).
The gauge theory below Λc might contain additional charged fields beyond the matter

content of the pure MSSM (e.g. four extra doublets in our example). These fields have to
be heavier than roughly 1 TeV. Their effect on the RG-running is to reduce βIR

tot at energies
above their masses, pushing the intersection scale Λc to higher energies. As a result, it is
sufficient to take βIR

tot to be given by the MSSM result in order to get a lower bound on
Λc. This corresponds to taking the unknown new masses to be O(Λx). In other words,
computing the matching using the IR running of the pure MSSM provides a lower bound
for new physics, which can be either the appearance of new strongly coupled gauge groups
or the more standard possibility of exotic heavy matter.

Let us discuss in some more detail the behavior of xtot around Λc. Following section 2,
the G nodes confine and the ones in the two SM sets are pairwise higgsed to the diagonal
SM. Since G is at infinite coupling, xtot only receives contributions from the two SM sets.
Furthermore, each of the two SM copies contains a U(1) node. We can think about them
as containing trivial ”SU(1)” factors with no associated gauge couplings. These nodes arise
after dualizing Nf = Nc + 1 gauge groups. These Seiberg dualities take place when their
inverse couplings vanish. We conclude that, just above Λc, xtot only gets contributions
from the two SU(2) and two SU(3) nodes in the SM copies. The inverse squared couplings
of the diagonal groups are simply given by

x
(SMD)
i = x

(SML)
i + x

(SMR)
i (5.8)

with i = 2, 3.
Let us proceed to the actual computation of Λc. First, we calculate the superconformal

R-charges. Using the notation for fields in the parent SPP theory, we first see that RX =
RX̃ = RY = RỸ and RZ = RZ̃ due to symmetries. Vanishing of the beta functions (5.1)
and (5.2) for all gauge and superpotential couplings reduces to

RΦ + 2RX = 2
RX +RZ = 1

(5.9)

We have two independent equations in three variables. As we have explained, the remaining
freedom is fixed by maximizing (5.3). The result is

RΦ = 2− 2√
3

RZ,Z̃ = 1− 1√
3

RX,X̃,Y,Ỹ =
1√
3
. (5.10)

Plugging these values into (5.7) we obtain βUV
tot = −9. Below the ignition scale, we have

βIR
tot = 2. This value is obtained by computing the 1-loop beta functions for the SU(2) and

SU(3) inverse squared gauge with the MSSM matter content and adding them up.
The ignition scale Λc is determined by matching the IR and UV running of xtot as

shown in figure 3. The boundary condition in the IR is given by the value of xtot at some
given scale. From [36], we obtain x2 ∼ 185 and x3 ∼ 53, i.e. xtot ∼ 238, at the Z-pole
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MZ = 91.2 GeV. The UV piece of the RG flow is parametrized by the position of the duality
wall Λw, where xtot = 0. Putting everything together, we get

xIR
tot = 238 + 2 log (Λ/MZ) xUV

tot = −9 log (Λ/Λw) . (5.11)

Since the wall indicates the transition to the full 10-d string theory, it is natural for Λw to
sit close to MPl. For Λw = 1019 GeV we get Λc ∼ 3000 TeV. We can contemplate lowering
the wall to GUT scales. For Λw = 1016 GeV we get Λc ∼ 10 TeV. It is interesting to notice
that the Λc/Λw hierarchy is mostly determined by IR parameters: namely the D7-branes
that are necessary to obtain a sensible MSS-like model. In addition, even though the
decoupling scale can get interesting low values, it naturally comes out sufficiently high to
avoid any compositeness constraint.

6 Supergravity dual

We now turn to describe the properties of the supergravity gravity dual of a cascading gauge
theory. The specific example of interest is the dual of the gauge theory associated with a
collection of fractional and flavor branes at the Z3 orbifold of the suspended pinch point
singularity. The SPP singularity is the real cone over the L121 space, one of the members
of the Labc series of 5-manifolds. The metric on this space is explicitly known [37, 38],
and this in principle allows us to be rather explicit about the gravity dual of our specific
example. We will try to keep our discussion somewhat general, however, using the SPP/Z3

example as our guide.
The 6-dimensional internal manifold, on which the various branes will be wrapped, is

an orbifold of a cone over an Einstein-Sasaki 5-manifold Σ5, which we assume is an Labc

space. The 5-manifold itself is a circle bundle over a 4-d base manifold Σ4. The metric on
the total 6-d cone takes the form

ds2
6 = dr2 + r2(dψ +A)2 + r2ds2

4 , (6.1)

where ds2
4 = hab̄dz

adzb̄ is the metric of the 4-d Kähler-Einstein base manifold Σ4, with
Rab̄ = 6hab̄ and Kähler 2-form Jab̄ = 6iRab̄. The coordinate ψ is the angular coordinate on
the circle bundle of the base Σ4 and the one-form A satisfies

dA = 2J.

For the non-compact cone, the r-coordinate has infinite range. We assume that the orbifold
is defined via isometric identification map on the base manifold Σ5.

The base orbifold Σ5/Γ contains various homology cycles, that may support wrapped
D-branes and their associated RR-fluxes. Our brane configuration involves D-branes
wrapped over both compact cycles within the base Σ4 of the cone and non-compact cycles
(flavor branes). Correspondingly, the world-volume gauge fields of the branes on compact
cycles have normalizable zero modes and descend to local 4-d gauge fields, while for the
flavor branes, the zero mode of the world-volume gauge fields is non-normalizable and the
7-d gauge group descends to a global flavor symmetry in 4-dimensions.
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6.1 Gravity dual without D7-branes

To begin, let us summarize the asymptotic behavior of the solution dual to the cascading
gauge theory associated with N D3-branes and M wrapped D5-branes, without any flavor
D7-branes [12, 38–40]. As in the KS solution, it is characterized by the presence of the
imaginary anti-self-dual 3-form flux.

The 4-d base manifold Σ4 supports an anti-self-dual closed (1,1)-form ω2, satisfying
?4 ω2 = −ω2. We normalize ω2 to have unit period around the dual 2-cycle C2. It is then
straightforward to show that the (2,1)-form

Ω2,1 = κ
(dr
r

+ i(dψ +A)
)
∧ ω2 (6.2)

is imaginary self-dual and primitive. Here κ is a normalization constant, fixed such that
Ω2,1 has unit period around its dual 3-cycle C3. With the help of this, we can now write
the supersymmetric Ansatz for the asymptotic metric and RR-field strength [41]

ds2 =
1√
h
dx2

1,3 +
√
h ds2

6 ,

gsF5 = (1 + ?10)dh−1∧ d4x . (6.3)

G3 = iM Ω2,1 , G3 = dC2 + τH3

where τ = C0 + ie−φ is the axio-dilaton, Fp = dCp−1 − Cp−3 ∧H3 denote the RR p-form
field strengths, and H3 = dB is the field strength of the NS 2-form B. The solution for
the warp factor h follows from its relation with the self-dual 5-form field strength, which
in turn is obtained by integrating its Bianchi identity

dF5 = H3 ∧ F3 . (6.4)

The shape of the warp factor dictates the holographic identification between the radial
coordinate r and the RG scale of the 4-dimensional gauge theory. The solution without
D7-branes has a constant dilaton eφ = gs and axion C0.

The above equations uniquely characterize the solution for large values of the radial
coordinate r. The supergravity solution can be trusted in the regime where the 3-form flux
M is large compared to 1/gs. Naive extrapolation to small r, however, yields a solution that
develops a singularity at its tip. This singularity needs to be smoothed out via a suitable
complex deformation, similar as for the KS solution. As explained in the introduction,
however, for the specific application to the cascading theory of interest, we are interested
in the large radius region only, corresponding to regime II far from its IR starting point.
In this region, not only the supergravity approximation can be trusted (since curvature
invariants are controlled by gsN , which is large) but also the deformation is unimportant.

A D5-brane wrapped around the 2-cycle C2 creates one unit of F3 flux around the dual
3-cycle C3. The solution without D7-branes has a fixed D5-brane charge M , read off by
integrating the RR 3-form field strength over the 3-cycle C3 within Σ5 dual to Ω2,1

M =
∫
C3
F3 . (6.5)
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The D3-brane charge, however, is not fixed: it evolves as a function of the holographic
RG-coordinate r. We can introduce the effective D3-brane charge as the RR 5-form flux
through the 5-d base manifold Σ5

N eff =
∫

Σ5

F5 . (6.6)

F5 is sourced by the D3-branes, and as seen from eq. (6.4), by the cross product of the
3-form fluxes. The r-dependence of N eff can be expressed as

dN eff

dr
= M

dβ

dr
(6.7)

where
β =

∫
C2
B (6.8)

denotes the period of the NS 2-form around the 2-cycle C2.
Using the expression (6.3) for the imaginary anti-selfdual 3-form, we read off

β(r) ' κgsM log r . (6.9)

As shown in the original work of Klebanov and Strassler, the r-dependence of the D3-brane
charge precisely matches with the growth in the gauge group rank during the RG cascade
of the dual gauge theory. The period β represents the difference between the inverse gauge
couplings of gauge groups, and its r dependence reflects the running of these couplings.
Evidently, the rate of growth in the total rank of the gauge groups during the RG cascade
is proportional to the beta-functions that drives the gauge couplings. The beta function is
constant and the effective rank thus growth logarithmically with scale.

6.2 Adding the flavor D7-branes

We now add the flavor D7-branes to this system. We will take into account their effect on
the background to linearized order, in very much the same spirit of [42]. This is an allowed
approximation in the supergravity regime II, where the D5-brane charge M is much larger
than K, the number of D7-branes.

In Einstein frame, the D7-brane world volume action reads∫
D7
eφ
√
−det(ĝ + e−φ/2F) +

∫
D7
Ĉq e

−F (6.10)

It depends on the gauge field strength F via the combination

F = F −B . (6.11)

Flavor D7-branes are space-time filling. The supersymmetric branes wrap a holomorphic,
non-compact 4-cycle within the 6-manifold, specified by some embedding equation

α(zi) = 0 , (6.12)
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with α(zi) some holomorphic function defined on the internal 6-manifold. Although we will
not attempt to do so here, it should in principle be possible to find the explicit form of the
necessary embedding equations for the specific example of the SPP/Z3 quiver discussed in
this paper. We will assume that α(zi) is single-valued.

Since the D7-branes are a magnetic source for the axion field strength F1 = dC0, the
axio-dilaton has non-trivial monodromy around the D7-brane locations. A holomorphic
expression for the axio-dilaton with the proper monodromy is [43, 44]

τ =
i

gs
− i

2π
logα(zi). (6.13)

Notice that when obtaining (6.13) we are just imposing that τ has the correct SL(2, Z)
monodromy. We therefore expect this expression to be valid even beyond the linearized
regime. Indeed, this is the case in known flavored examples where the full backreacted
solution has been obtained [45–47]. If S1 denotes a circle that surrounds K D7-branes,
that is, if the function α(zi) has K zeroes within the region surrounded by the S1, then∮

dτ =
∮
S1

F1 = K (6.14)

The holomorphic function α(zi) can be factorized into a product of K elementary
functions αk(zi), each representing the embedding equation of a single elementary D7-
brane. As previously explained, these embedding equations arise via the F-term equations
Xk = 0 of the extra flavored matter associated with the intersection between the flavor and
the fractional branes. This correspondence motivates the interpretation of the αk(zi) as
the holographic wavefunctions of the operators Xk associated with the corresponding flavor
node [48, 49]. We can thus relate the asymptotic dependence of the embedding function
α(zi), as a function of the radial coordinate r and angular coordinate ψ, to the sum of the
scaling dimensions and R-charges of the operators Xk, via

α(zi) = zβ1 α̃(xi) , (6.15)

with
z1 = reiψ/3 , (6.16)

xi the four additional internal coordinates and

β = −3
2

∑
D7k

RXk . (6.17)

Plugging this into the expression for the dilaton gives

e−φ =
1
gs
− β

2π
log(r/r0) (6.18)

Here we recognize the RG dependence of the total gauge coupling xtot =
∑

k xk of the
quiver gauge theory found in the previous section. We will explain this correspondence in
the next subsection.12

12Note that the r.h.s. of (6.18) passes through 0 at some critical radius r = rwall, indicating the possible

presence of a duality wall. As explained before, we assume that the throat geometry is cut-off, and glued

into a more complete 10-d string compactification, at a scale rdecomp < rwall, thereby avoiding the presence

of an actual duality wall.
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The combined presence of fractional and D7-branes leads to some subtle modification in
the equations for the higher RR-forms F3 and F5. Since the NS 3-form flux is turned on, its
pull-back to the D7 worldvolume will be non-zero. This will in turn induce worldvolume
flux F , that sources the RR-forms. Taking this into account, one derives the following
Bianchi identitites

dF1 = −Ω2

dF3 = H3 ∧ F1 −F ∧ Ω2 (6.19)

dF5 = H3 ∧ F3 −
1
2
F ∧ F ∧ Ω2

Here Ω2 denotes the delta-function 2-form localized on the D7-brane world-volume. The
extra localized terms reflect the fact that the flux of F and 1

2
F ∧ F give rise to extra

induced D5-charge and D3-charge. The presence of the localized source terms can also be
understood by requiring that the SL(2,Z) covariant 3-form field G3 = F3 + τH3 remains
single-valued around the D7-branes.

More important for our purpose, however, is that the above equations show that, in
the presence of D7-branes, the flux of the RR 3-form F3 is no longer quantized or constant.
We can introduce an effective D5-brane charge

M eff =
∫
C3
F3 (6.20)

Here the integral is performed at a given radial location r. Let us suppose that the F1 flux
through the S1 at this location r takes the quantized value K. It is then straightforward
to derive that the effective brane charges can be expressed in terms of the period β of the
NS B-field as

M eff = M +Kβ

N eff = N +Mβ + 1
2
Kβ2 (6.21)

The radial dependence of the period β can be found by integrating the Bianchi equation
for the SL(2,Z) covariant 3-form

dG3 = dτ ∧H3 . (6.22)

In the linearized approximation, and using eqs. (6.2), (6.3) and (6.13), this gives

dG3 '
κgsM

2πi
dα

α
∧ dr
r
∧ ω2 (6.23)

This equation may be integrated, with the result

β(r) ' κgsM

(
log r +

β

2π
(log r)2 + . . .

)
(6.24)

where we used eq. (6.15).
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The equations (6.24) and (6.21) summarize the holographic manifestation of the RG
cascade of the dual quiver gauge theory, and show how the presence of the extra flavors
accelerates the RG running and of the growth in the number of colors. We will now
elaborate this correspondence, and make a more detailed comparison with the gauge theory
description of the duality steps.

6.3 Geometric description of the duality cascade

We wish to recover the properties of the duality cascade of the quiver gauge theory from
the string dual. To this end, we will make use of two different geometrical perspectives:

(i) D-brane-probe perspective. The cascading gauge theory has not yet reached the
large N regime. It can be engineered from fractional and flavor D7-branes on a
singular cone geometry. Coupling constants are parametrized by the geometric data
defined on the cone. RG-running is represented by adjusting these geometric data.

(ii) Supergravity perspective. The cascading gauge theory is assumed to be in the large
N and large ’t Hooft coupling regime. All degrees of freedom and couplings of the
gauge theory can be captured by a dual geometry, with a number of flavor D7-branes.
The fractional brane charge is carried by RR-flux, as summarized in section 6.2.

The supergravity dual correctly encodes global properties of the cascading quiver gauge
theory, such as the RG running of couplings and overall growth in the number of colors,
but does not appear to have sufficient structure to fully reconstruct the sequence of Seiberg
duality maps. The D-brane probe picture, on the other hand, provides an attractive dual
perspective on Seiberg duality, and thereby gives a useful interpolation between the gauge
theory and supergravity description of the cascade.

How does one recover the duality cascade from the D-brane probe perspective? In what
follows, we generalize the concept of fractional branes from the common use in the litera-
ture, and apply it to any supersymmetric bound state of D3, D5 and D7-branes wrapped
over appropriate (not necessarily compact) cycles. This general approach allows us to study
the ‘color’ D-branes (wrapping compact cycles within the 4-d base Σ4 of the complex cone)
and the flavor branes (whose D7-brane components wrap non-compact 4-cycles) on an
equal footing.13 The presentation below is complementary to closely related discussions
in [46, 47].

The fluxes of F along the non-trivial 2-cycles in the base represent the D5-brane
wrapping charges of the fractional brane; the D3-brane charge is the instanton number.
The D7, D5 and D3 wrapping numbers are combined in a charge vector, which we denote by

Q = (q3, q5, q7) . (6.25)

The previous expression, as the ones that follow, is schematic. Q is in general a multi-
dimensional vector whose dimension is equal to the number of independent fractional

13Although the flavor nodes themselves do not undergo any Seiberg dualities, the flavor D7-branes do

influence and actively participate in the duality cascade, as we will see below.
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branes. Following our generalized definition of fractional branes, this number is the sum
of the total dimension of the cohomology groups of the base Σ4 and the number of non-
compact 4-cycles in the full cone. The quiver gauge theory is engineered from a collection
of several intersecting fractional and flavor branes, with total charge∑

i

NiQi = (N,M,K ) (6.26)

Here Ni denotes the multiplicity of the Qi fractional brane, and equals the number of colors
(or flavors) of the corresponding gauge (or global symmetry) group factor.

The gauge coupling of a fractional brane with charge vector Qi is given by [50]

xi = e−φ|Z(Qi)| (6.27)

where Z(Qi) is the central charge of the brane. It depends linearly on the charge vector

Z(Q) = q3 + q5Π + q7K. (6.28)

The formula (6.27) can be derived from the boundary CFT description of fractional branes,
and does not rely on the supergravity approximation. In the geometric regime, the explicit
form of the central charge can be found by expanding the Born-Infeld world-brane ac-
tion (6.10). One finds that Π and K are given by the period integrals

Π =
∫
C2

(B + iJ) , K =
1
2

∫
Σ4

(B + iJ)2 , (6.29)

where J denotes the Kähler 2-form of the 4-d base manifold Σ4. The holographic RG
running of the gauge couplings is driven by the evolution of these integrals and the dilaton
along the radial direction. Note that the gauge coupling vanishes for the flavor D7-branes
that wrap non-compact 4-cycles.

The central charge Z(Q) specifies which N = 1 sub-algebra of the N = 2 supersymme-
try of the IIA supergravity background is preserved by the fractional brane. A collection of
branes is supersymmetric if all their central charges are aligned, and have the same sign.14

This condition naturally dictates the appearance of a duality cascade. As the periods Π
and K evolve under the holographic RG, the central charge vector of one or more branes
may become zero and change sign at some value of the radial coordinate. Beyond this
point, the original configuration of branes becomes unstable, and has to rearrange itself
to realign all central charges. This rearrangement is the geometric manifestation of the
Seiberg duality map.

Consider the location where the central charge of the Qj brane changes sign. Roughly
speaking, it then turns into its own anti-brane. To restore supersymmetry, and stability,
the fractional branes must form a new set of bound states. After this rearrangement, the
charge vector of the j-th fractional brane has changed sign

Qj → −Qj (6.30)
14A relative phase between central charges of two fractional branes translates into an FI-parameter of

the gauge theory. Misalignment of the charges reflects supersymmetry breaking via D-terms.
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and, as suggested by the Seiberg duality map, has a new positive multiplicity equal to

Nj → Fj −Nj (6.31)

where Fj denotes total number of flavors of the Qj node. We can express Fj as

Fj =
∑
i>j

Ni fij (6.32)

where the sum runs over all other fractional branes that connect to the Qj fractional brane
via a positive number fij of incoming lines. The number fij equals the intersection number
between the corresponding pair of fractional branes.

To absorb the overall change in the charge vector, these other branes form an appro-
priate bound state with Qj branes, adjusting their charge vector according to15

Qi → Qi − fij Qj . (6.33)

From the geometric rules that give the chiral mater content, one easily verifies that the
above re-combination of bound states reproduces the Seiberg duality map. More detailed
discussions of this correspondence can be found in [51, 52]. Here we just make a few
comments, that are relevant for the present discussion:

(i) From this adiabatic probe brane perspective, the Seiberg duality is not some similarity
transformation, but a true dynamical readjustment of D-brane bound states.16

(ii) The full set of charge vectors and multiplicities satisfy the constraint (6.26): the total
brane charge is preserved throughout the duality cascade.

(iii) The global flavor nodes have vanishing gauge coupling, and do not undergo any
Seiberg duality. However, they do actively participate in the cascade: their pres-
ence modifies the duality rules for the other nodes, and their charge vectors trans-
form according to (6.33). The flavor branes thus necessarily carry a composite D-
brane charge.

At first sight, the second fact (ii) sounds somewhat surprising, and seemingly at odds
with the usual argumentation for how the supergravity background mirrors the duality
cascade. After all, after many duality steps towards the UV, all gauge group factors have
acquired some large rank, and this should translate into a large total D-brane charge. More-
over, in this regime, the gauge theory is known to admit a dual supergravity description,
supported by a correspondingly large RR-flux.

The apparent contradiction is resolved by taking into account the third remark (iii):
the flavor nodes, while seemingly passive observers to the RG cascade, do accumulate D-
brane charge along the way. In the probe brane perspective, this follows from (6.33). In

15The index j is not summed over. Note that the bound state formation changes the expression (6.27) for

the gauge couplings of the nodes for i > j. The value of the coupling is continuous, since the transition (6.33)

occurs at the specific radial location where Z(Qj) = 0.
16In the mathematical literature, the stable basis of fractional branes is called an ‘exceptional collection’,

and the Seiberg duality map is a special map known as a ‘mutation’ [53, 54].
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the supergravity, this effect is manifest from the D7-brane worldvolume action (6.10): its
Chern-Simons term carries an effective D5 and D3-brane charge given by the flux of F and
of 1

2
F ∧ F through the corresponding cycles. This effective charge grows with the period

β of the NS 2-form, and thus runs over a continuous range of values. This continuous
effective charge is related to the ‘true’ quantized D-brane charge, given by the integral flux
of F and 1

2
F ∧ F , as follows.

The D7 world-volume action is invariant under the redefinitionB → B+dΛ, A→ A+Λ,
with A the world-volme gauge field and Λ any one-form. Λ is allowed to multi-valued,
provided that dΛ belongs to an integral cohomology class. Large gauge transformations
of this type shift the period of B and the fluxes of F by an integer. Assuming that they
simultaneously act on all fractional brane world-volumes, these large gauge transformation
act on the individual and total D-brane charges via

β → β − n q7 → q7

M → M + nK q5 → q5 + n q7 (6.34)

N → N + nM + 1
2
n2K q3 → q3 + nq5 +

1
2
n2 q7

We can use this invariance to turn β into an angular variable, restricted to the interval
between 0 and 1. Note, however, that the discrete gauge transformation (6.34) leaves
the individual multiplicities Ni and intersection numbers fij between the fractional branes
invariant. Hence (6.34) does not act on the gauge theory data.

We can thus summarize the geometric manifestation of the duality cascade as follows.
The presence of H3 flux implies that the period β steadily grows along the holographic
RG-direction. Via eq. (6.27), this evolution matches with the RG running of the differ-
ence between the inverse gauge couplings xi of the gauge group factors. In the process,
two distinct types of discrete transitions take place. First, whenever one of the central
charges Z(Qi) changes sign, the fractional branes rearrange according to the Seiberg dual-
ity map (6.30) -(6.33). Secondly, whenever β becomes equal to 1, we may reset it to 0 by
performing the integral shift (6.34). The former transformation leaves the total D-brane
charge invariant, but changes the D-brane charge vectors, multiplicities (number of colors)
and intersection numbers (number of flavors), according to the Seiberg duality map. The
latter transformation does not act on the gauge theory data, but changes the total D3 and
D5-brane charge in a way that reflects the accumulative growth of the gauge group ranks
of the quiver gauge theory. At a phenomenological level, this growth is accurately captured
by the continuous effective charge (6.21).

6.4 Total gauge coupling and the dilaton

Finally, let us discuss in some more detail why it is natural in this context to consider
the total gauge coupling and explain its relationship with the dilaton. The argument is as
follows. In region II, after the cascade has proceeded through several cycles upwards, the
multiplicities Ni of the fractional branes all become large, and of the following form

Ni = N + riM + siK , (6.35)
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where ri and si are constants that encode the modification of the ranks in the presence D5
and D7-branes. From (6.34), we see that the number D7-branes remains constant while
the D5-branes grow linearly with the step of the cascade n towards the UV. At the same
time, the number of D3-branes grows quadratically with n. Then, we soon reach a regime
in which N �M,K, and the effect of the fractional brane charge M and D7-brane charge
K can be treated as small perturbations away from the conformal large N theory of N
D3-branes. As a result, the central charge (6.27) is dominated by the D3-branes. From
the linear relation (6.27)–(6.28) between the gauge coupling and the charge vector of the
associated brane, we see that the total gauge coupling

xtot =
∑
i

xi (6.36)

in this quasi-conformal regime reduces with the help of eq. (6.26) to the anticipated result

xtot = e−φ. (6.37)

7 Conclusions

We have outlined the general principles of N-ification, a new class of string (motivated) UV
extension of the SM. N-ification models provide a precise identification of the new degrees
of freedom corresponding to embedding the SM in a warped higher dimensional space and
their interaction with the SM: they are holographically mapped to a growing tower of field
theory degrees of freedom in a duality cascade.

The N-ification program can also be viewed as the generation of a UV string theory
starting from an IR gauge theory. As such, it can be applied to more general IR starting
points, such as the MSSM augmented by some hidden sector. The complex deformation
that terminates the cascade separates them in the extra dimensions. The two sectors are
then coupled by higher dimension operators suppressed by the mass scale of string states
stretching between them. Interesting hidden sectors include SUSY breaking ones as well
as conformal field theories. The latter provide realizations of the unparticle scenario in
N-unified models [55]. In fact, some of the models classified in [14] are explicit examples
of this idea.

Flavor D7-branes are a usual ingredient in type IIB local constructions of MSSM-like
theories. As we have explained, they lead to an acceleration of duality cascades. This is a
welcome effect in a holographic realization of the SM, since it rapidly puts us in a large-N
regime. The acceleration can be understood from both a field theory and a gravity dual
perspective by simply following the evolution of the total gauge coupling and the dilaton,
respectively. It leads to a large hierarchy between Λc (the scale at which the cascade is
ignited) and a UV scale at which the theory transitions to the full 10-d string theory (which
is naturally located close to the Planck scale). Interestingly, this hierarchy is determined
by IR data — the number and type of D7-branes — rather than allowing arbitrary values,
associated with some choice of fluxes, as in other constructions.17

17There also is some dependence on the extra gauge group G, which controls the extension of region I in

figure 3. This dependence vanishes in the limit of large rank for G.
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It would be interesting to investigate alternatives for SUSY breaking besides the pos-
sibility of a hidden sector. For example, whether the strong dynamics of the gauge group
G might be exploited for this purpose.

A natural question is whether an N-ification extension of the SM can not only accom-
modate but also constraint the SM gauge couplings to have the observed values that are
alternatively interpreted as arising from a GUT at high energies. In this work we have
only used very general properties of the duality cascade, such as the running of the total
gauge coupling. It is possible that the requirement of a periodic cascade imposes strict
constraints on the allowed couplings at Λc . Not surprisingly, the simple analysis of [11]
shows that in some cases periodic cascades rule out entire regions in the space of couplings.
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A D-branes on C3/Z3

In this section we discuss massless SUSY D7-brane embeddings in C3/Z3. A similar dis-
cussion applies to flavor branes in other singularities.

D3-branes on C3/Z3. The simplest example of a three node quiver theory is that of
single D3-brane probe near a C3/Z3 singularity. The orbifold identification gives rise to
three ‘image branes’, that are interchanged under the Z3-action

(x1, x2, x3)→ (ωx1, ωx2, ωx3) , ω3 = 1. (A.1)

Open strings in the untwisted sector reconnect with the same brane, while the twisted
sector open strings connect two different image branes. In the limit where the D3-brane
approaches the orbifold fixed point, the three image branes recombine into three so-called
fractional branes, corresponding to the three irreducible representations of the abelian
orbifold group Z3.

For N D3-branes at the orbifold, each fractional brane will occur with multiplicity
N . The world-volume quiver gauge theory has gauge group U(N)3 and three ‘generations’
of bifundamental chiral matter, associated with the intersections between the fractional
branes, as indicated in figure 9. The superpotential of the orbifold theory is the one
inherited from the N = 4 SYM covering theory, W = εijkTr(XiXjXk).

In D-brane engineering of quiver gauge theories, the individual fractional branes can be
used as independent building blocks. By assigning each fractional brane its own multiplicity
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N

N

N

Figure 9. The quiver diagram of N D3-branes on a C3/Z3 orbifold.

Figure 10. The three classes of flavor D7-branes on C3/Z3. Notice the opposite orientation
between (a) and (b). While class (a) couple to single bifundamentals, class (b) couple to linear
combinations of products of two of them. Class (c) are completly non-chiral.

ni, one obtains a quiver theory with gauge group U(N1) × U(N2) × U(N3). To get the
Standard Model gauge group, we introduce six fractional branes, and let the Z3 orbifold
symmetry act via the Chan-Paton matrices

γD3 = diag(11, ω12, ω
213). (A.2)

In other words: one fractional brane is in the identity representation 1 of Z3, two branes
are in the ω1 representation, and three branes are in the ω21 representation. This choice is
invariant under U(1)×U(2)×U(3) gauge symmetry. When done in isolation, the particular
choice (A.2) of Chan-Paton matrices would be inconsistent: the multiplicities Ni must
satisfy the constraint that the resulting gauge theory is free on non-abelian anomalies. To
arrive at a self-consistent construction, it is necessary introduce additional branes that, via
their intersections with the fractional D3-branes, give rise to the other chiral matter fields
that contribute to anomaly cancelation in the Standard Model. These extra branes are the
flavor D7-branes. From a string theory point of view, the flavor D7-branes are required in
order to cancel twisted RR tadpoles.

D7-branes in C3/Z3. D7-branes span the 3+1-dimensional space-time and a 4-
dimensional subspace of the internal target space. Supersymmetry requires that this in-
ternal subspace is some holomorphic 4-cycle, specified by an embedding equation of the
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form
f(zi) = 0 (A.3)

with f(zi) some holomorphic function defined on C3/Z3. The simplest class of elementary
D7-branes are given by the embedding equations

zr = Xr
12X

r
23X

r
31 = 0 . (A.4)

This equation evidently factorizes into three separate equations

Xr
12 = 0 ∪ Xr

23 = 0 ∪ Xr
31 = 0 . (A.5)

That is, eq. (A.4) is implied, if one of the three eqs. (A.5) is satisfied.
The flavor D7-branes intersect with the fractional branes and this produces extra chiral

matter fields Q, which arise as the ground states of the D3/D7 sector of open strings. The
embedding equation (A.4) arises as a solution to the F-term equation obtained by varying
the superpotential for the chiral fields Q. Each separate factor in (A.5) is associated to a
superpotential term

W = Q̃iX
r
i,i+1Qi+1 . (A.6)

The factorized solution of the embedding equation indicates that the D7-brane in fact
divides into three components. Geometrically, eqs. (A.5) are the condition that the D3-
branes are located within one of these three components18, so that the D3/D7 open strings
have massless ground states. The three components of the D7-brane are distinguished via
the action of the Z3-transformations on the D7 Chan-Paton index. (the extra chiral matter
fields transform under Z3 as Q → ωQ, Q̃ → ωQ̃). This class of factorizable embedding is
equivalent to the Ouyang embedding of D7-branes in the conifold [42].

Compound D7-branes are specified via an embedding equation of the form

Xr
12(Xs1

23X
t1
31 +Xs2

23X
t2
31) = 0 , (A.7)

with s1 6= s2 and t1 6= t2. Eq. (A.7) factorizes as

Xr
12 = 0 ∪ Xs1

23X
t1
31 +Xs2

23X
t2
31 = 0 . (A.8)

The second equation can not be factorized further, and arises as the F-term equation of a
quartic superpotential term

W = Q̃2(Xs1
23X

t1
31 +Xs2

23X
t2
31)Q1 (A.9)

We have set the coefficients of both terms in (A.7) to 1. By tuning their ratio, we can make
the embedding (and consequently the gauge theory) arbitrarily close to one with a single
term in the superpotential. In that case, the second term becomes important only for very
large vevs of the corresponding fields. The non-factorizable embeddings are analogous to
Kuperstein embedding in the conifold [56].

18A D3-brane and D7-brane can form a supersymmetric bound state, when the D3-brane is embedded

inside the D7 worldvolume.

– 31 –



J
H
E
P
0
6
(
2
0
0
9
)
0
3
0

There are 27 gauge invariant mesonic operators aαβγ = X
(α)
12 X

(β)
23 X

(γ)
31 in this theory.19

Following the previous discussion, they can be used to define D7-branes of the three general
classes shown in figure 10. The D7-branes in figure 10.c can be constructed with a straight-
forward extension of the above reasoning. They correspond to completely non-factorizable
cubic embeddings.
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